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AbstnIct-For a generally anisotropic laminated thin elastic non-eircular cylindrical shell, subjected to a
combined loading, the equations of motion of a second approximation Flugge-type theory are derived and
expressed in terms of the shell middle-surface displacement components. As an application. (or the (ree
vibration problem of a cross-ply laminated non-eircular cylindrical shell subjected to 52 simply supported
edge boundary conditions. these equations are solved by employing the method of Galerkin. For a family of
regular antisymmetric cross-ply laminated oval shells. numerical results are obtained and discussed.
Compa'risons are also made between some of the obtained results and corresponding results obtained from
the solution of the quasi-shallow shell Donnell-type equations of motion.

I. INTRODUCTION

During the past two decades a considerable amount of atte~tion has been concentrated in
problems concerned with the investigation of the behaviour of laminated composite structures.
Thus, for the stability and dynamic analysis of laminated composite thin elastic cylindrical
shells, the equations of several type theories have been derived and used.

For generally anisotropic laminated circular cylindrical shells, Donnell's shallow shell
theory(l] has been used for the equations derived by Dong et al.[2] in terms at the Airy's stress
function and the normal to the shell middle surface displacement. The same type of equations,
but in terms of the shell middle surface displacement components, can be obtained as a special
case of those equations quoted by Soldatos in Ref. [3]. Love's first approximation shell
theory[4] has been used for the sets of equations derived by Bert et al.[5] and by Greenberg
and Stavsky[6J. Finally, Flugge's second approximation theory[7] has been used for the
derivation of the corresponding equations presented by Cheng and Ho[8].

For laminated composite noncircular cylindrical shells, a set of Donnell-type equations has
been recently presented by Soldatos and Tzivanidis[9]. However, Donnell-type equations are
suitable only for the analysis of short cylindrical shells (see, e.g. Refs.[tO], 11]). Furthermore,
with the equations quoted in Ref. [9] only cross-ply laminated shells can be studied.

The main purpose of the present paper is to extend Flugge's theory to consideration of the
dynamic behaviour and stability under combined loading of a generally anisotropic laminated
noncircular cylindrical shell. A function of the shell circumferential coordinate is introduced to
describe the divergence of the noncircular shell configuration from that of a corresponding
circular one. Then, the Flugge-type equations are expressed in terms of this function as well as
of the shell middle surface displacement components.

As an application of the derived equations, ~e free vibration problem of a cross-ply
laminated noncircular cylindrical shell subjected to S2 simply supported edge boundary
conditions (following Almroth's classification[l2]) is introduced. It is solved by the procedure
followed in Ref. [9J, where the Donnell-type equations had been solved by employing the
method of Galerkin. Then, for the case of a regular anisymmetric cross-ply laminated oval
cylindrical shell, a comparison between corresponding results obtained by both Flugge and
Donnell theories is attempted. Finally, some more numerical results obtained by Flugge's
theory are presented and discussed.

2. CONSTITUTIVE EQUATIONS

Figure 1 indicates the nomenclature of the middle surface of a laminated thin noncircular
cylindrical shell consisting of an arbitrary number of layers. Each individual layer is considerea
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Fig. I. Nomenclature or the non-circuhlr cylindrical shcll.

to behave macroscopically as a homogeneous, anisotropic, linearly elastic material. Further­
more, the layers are assumed to be perfectly bonded together.

Under these circumstances, each layer (say the kth one) is assumed to be in a state of plane
stress governed by the two-dimensional Hooke's law,

[U~l)] [QW QW Q~~J [EX]
U~l) = Q\~ Q~) Q~ Es

UCl) QCl) QCl) QCl) E 'xs 16 26 66 xs
(1)

where, for the Flugge's theory used here, the shell strain components can be expressed, in
terms of the middle surface displacement components, as follows [7):

Ex = ",x - ZW,.U, Es = V,s - z(l +zlRf1w.ss + w(R +Zf',
Exs =",s(l +zlRf' +v.x(l +zlR) - zw.xs[l +(l + zIRf'].

It is convenient to adopt here the expression

(lIR) = (lIRol/(s),

(2)

(3)

used in Ref. [9], for the shell middle surface variable radius of curvature. In eqn (3), Ro is a
constant and /(s) is a function of the circumferential co-ordinate s, so that for /(s) = 1 the
configuration of the shell middle surface is that of a circular cylinder of radius Ro• Thus, /(s)
can be considered as a function describing the divergence of the configuration of the noncir­
cular shell from that of a corresponding circular cylindrical one, both of them having the same
circumferential length (2'71'Ro).

The well known force and moment resultants are, respectively, defined as follows:

f
h/2

NT = [Nx, N" Nx" Nu ] = [u.(l + zlR), u" uxs(l +zlR), uxs] dz,
-h/2

MT = [M.. M" Mx" Mu ] = fltl2 [ux(l +zlR), u" uxs(l + z/R), uxZ] dz
-h/2

where h is the shell constant thickness. Using, where it is needed, the approximation

and carrying out the noted integrations, the following COilstitutive equations are obtained,

(4)

(5)

(6)

where the components of the vectors e and k represent the strains and the changes of
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curvature, respectively, of the middle surface given as follows,

ex = u"', e. = v.• + z/R, ex. :::: U•• + V.",

k" = - w.w k, = - (w..... +z/R 2
), kx.• = - 2w.u +(v.x - u.,)/R. (7)

The components of the stiffness submatrices A', B', and C' are given in terms of the components
of the well known extensional, coupling and bending submatrices[t31,

(Aij,Bij,Dij)=fltl2 Qij(1,z,z1dz, i,j= 1,2,6
-"'2

(8)

(10)

in Appendix A.
The coupling stiffness Bij represent the shell lamination effect which is an additional

coupling between bending and extension, except that coupling due to the nonzero shell
curvature. For homogeneous shells all Bij become equal to zero, so that this additional coupling
disappears. It must be noted here that in the case of a first approximation shell theory the
elements of both matrices B' and C' coincide with the coupling stiffness Blj (see, e.g. Ref. [5]).

3. EQUATIONS OF MOTION

Flugge's differential equations for vibration and buckling under combined loading can be
expressed in terms of the shell force and moment resultants, as follows[7]:

N"." +N.:<.. - pR(u... - w)R) - Pu,JtJC - 2Tu",. =Pou.1I

N•.• + N..." + (M•.• + M...x)/R - pR(v + w.JR) - PV.JCJC - 2T(v"" + w)R) =Pov.1I

- N./R + M".JCJC + (M". + Mu ) ... +M - pR[w... + (u." - v,./R]- Pw,JtJC +2T(v)R - w...)= PoW.Ill

(9)
where p is the initial external radial pressure, P and T are the initial axial compression and
torsional force per unit length, respectively, t is time and the inertia factor Po is defined as

Po =JItI2 Pdz,
-1tI2

P being the shell mass density varying, in general, from layer to layer.
Using nondimensional coordinates,

"I =x/L, e=s/2'11'Ro, O:s "I, e:s 1,

and introducing the non4imensional parameters,

,\ = RotL, (p, P, T, p) = (pRo, P, T, PoR'fJ/AII>

(Alj, Bij, Vii) = (Aij, BiJRo, DiJRo1/A.1>

(11)

(12)

eqns (9) can be expressed, in 'terms of the shell middle surface displacement components, as
follows

(13)

where Ltj(i, j =1,2,3) are the following linear partial differential operators:

L II =(2d)~1+BII! - P)( )."" +4'11',\(A.6- T)( )''If
+[(~ - 8661 +V66I10.ll.f - (p/!)().u - 4'11'2p( ).11'

L 12 = (2'11''\)~AI6+281J +VIJ1< )."" +A26( ).u

+ 2d(A I2 +A66 +B.J)( ).'If+ 2d[j( )...If'
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L I3 = 471'2'\(.4. IJ + p){ ).TI + 271'[(A2J - .82J 2+D~3)OJ.(
23- - 2 - -- 471' A(B II + D ll/)( ),'1'171 - 271'A (3B 16 + DIJ)( )''I'J{

- ,\(.8 16 + 2.81>6)( ),'1(( - AD66[J( ),'J{J.( - 0/271').826( ),W - 0/27t')D26[J( ),~d.6

L 21 =(.8u. - ~J)f'( ).( + (271'A)2[A I6 + 2.8 IJ + DIJ1( ).'1'1

+ 27t'A [.4. 12 + .4.66 + (.812 + .866)fl( ),~ + A26( ),((,

L22 =271'A(.826 + D2J)/,( ),'1 + (271'A)2(.4.66 + 3.86d + 3D6d2
- P)( ).'1'1

- - -2- - - 2
+ 47t'A(A26 + 2Bld + D2J - T)( ).'J{ + [A 22 + B2J - plf]( ).U - 471' p( ).'h

L 23 =471'2>.(A26 + .8ld - 2T)f( ).'1 + 271'(.4.22 - .82J/)[J( )l(

+ 27t'D~/[J2( )1.( - 271'p( ),( - 471'2A(.4.26 + .8ld + 2T)f( ).'1

-ADld'( )11J(-471'2,\3(BI6 +2D.J( ).'1'1'1 -271'A 2[.812 +2B66

+ (D12 + 3D(6)f]( )''!'K - A(3.826 + 2D2d)( ).'1« - (1/21T)(B22 - ~J/)( ),{{{,

L 31 =471'2>.(A1J + p)( ),'1 + 21T(A26 - B~ + Dld~f( ).{ - 471'2A3(.8 11 +D/l/)( )''''1'1
2- 2- - - -

-671''\ B16( ).'!'K-271'A D,JJ( ).'I'Il{ -,\(B I2 +2BI>6)( ).'J{{-ADtJ!( ).~J.(

- (1/21T)B26( ),{{{ + (l/271')D26U( ).{l«,
- - - - 23--L 32 = 471'2A(A26 + Bld-2T)/( )''I+27t'(A~-p)().,-471' A(B I6 +2D1J)( ).'1'1'1
2 - - - -- 271'A [B 12 + 2B66 + (D12 + 3D(6)f]( ),'!'K

- 3,\B26( ),TJ(( - AD26[2/( ),'I{ + /'( )''Il( - 0/271').822( ),{({,

2- - - 22 --L33 =471' (A22B~ + D2J )f () - 41TA(B26 - ~J)/'( ),'1

- (21TA)2(2.8 IJ - P)( ),,,'1 -471'A(2.8~ - D2d2- T)( ).1J(

- [.8221 - ~2 _ p/fJ( ).{( - [(.8~ - ~2( )l{(
3- - 24-

+ 871''\ D16( ).'I'I'I{ + (2M7I')D26( )."m + 471' AD ll ( ).'1'1'1'1
2- - 2- 2

+ 2A (D12 + 2D(6)( ).TJ1J(( + (1/471' )D22( ).{{{{ +471' ji( )./1' (14)

Here, f is assumed to be expressed as a function of the nondimensional circumferential
co-ordinate ~ and a prime denotes ordinary differentiation with respect to ~. Setting f<eJ = I and
neglecting all inertia terms, eqns (13) reduce to the F1ugge-type equations, given by Cheng and
Ho[S], for the stability analysis of anisotropic laminated circular cylindrical shells under
combined loading.

Equations (3) and (14) seem to be quite complicated. However, there are many engineering
applications for which these equations can be considerably simplified, Thus, in the case of a
cross-ply laminated shell (consisting of orthotropic layers whose material axes of symmetry
coincide with the curvilinear shell co-ordinates):

(5)

Furthermore, for a regular antisymmetric cross-ply laminated shell (even number of layers
consisting of the same orthotropic material and thickness and with material axes of symmetry
alternately oriented at angles 0 and 90° to the shell co-ordinates), it can be shown that:

(16)

For an antisymmetric angle-ply laminated sheJl (even number of layers of the same
thickness and orthotropic material, and with material axes of symmetry alternately oriented at
angles of +8 and - 8 to the sheJl axis), it can be shown that the first two of the relations (15)
are still valid but B16 and B26 are the only nonzero coupling stiffnesses,

For symmetric laminates (symmetry of both geometry and material properties about the
middle surface) all coupling stiffnesses Bil can be shown to be zero. However, this does not
necessarily imply that the shell can be considered a homogeneous one. For homogeneous shells,
the following additional relationship must be satisfied:

(17)
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Furthermore, in the special case of a homogeneous isotropiC shell, extensional stiffnesses are
given as follows:

All =A22 =hE/(1- 111,
A66 = hE/2(1 + II),

AI~= IlEII/(]- v2
),

A16 = A26 =O,

where E and II are Young's modulus and Poisson's ratio, respectively,

4. APPLICATION FREE VIBRATIONS OF
CROSS·PLY LAMINATED NONCIRCULAR CYLINDRICAL SHELLS

It would be of interest to use the derived equations in order to solve a particular problem,
Thus, the free ,vibration problem of a cross-ply laminated noncircular cylindrical shell subjected
to the following S2 simply supported edge boundary conditions is considered:

Nx =v =w=Mx =0, at 'IJ =0,1. (19)

As it was mentioned before, because of the relations (15), the Flugge-type eqns (13) and (14) are
considerably simplified, Furthermore, for the considered problem, all terms containing the
loading parameters p, P and f, in the expressions (14) must be omitted,

The problem will be solved by the same procedure used by Soldatos and Tzivanidis in
Ref. [9]. There, the Donnell-type equations had been used and solved by employing the method
of Galerkin, Thus, the shell middle surface displacement com~onents are expanded into the
following Fourier-series form:

N

U =cos \wt) cos (m'lTTl) L aan cos (2n'lT~),
n=O

N

V = cos (wI) sin (m'lTTl) L abn sin (2mTe),
n-O

N

IV = cos (wI) sin (m'lTTl) L aCn cos (2n'lT~),
n=O

(20)

which satisfies the edge boundary conditions and represents symmetric displacements in the
circumferential direction (for antisymmetric displacements the sine and cosine functions in the
~ direction must be replaced by cosine and sine functions respectively), In the expansions (20),
w represents a certain unknown natural frequency, m and 2n are the axial and circumferential
halfwave numbers, an, bn and Cn are unknown constant coefficients and a is equal to 1/2 if n = 0
and is equal to 1 if n > 0,

In order to solve the free vibration problem of a homogeneous isotropic oval cylindrical
shell subjected to S2 edge boundary conditions, Culberson and Boyd [14], introduced the
displacement model (20) into Love-type equations of motion and derived 3(N + 1) recurrence
formulas for the 3(N +1) unknown constants an, bn and cn(n =0,1, .. .,N). However, the
Fourier-series expansion (20) is a special case of the more general modal expansion used by Chen
and Kempner [15] for the investigation of the effect of various types of boundary conditions on the
dynamic characteristics of homogeneous isotropic oval cylinders. There, a variational method
equivalent to the Ritz's one had been applied onto the energy functional of the Sanders' shell
theory [16].

Since there is a very close connection between the two methods of Ritz and Galerkin[17], it
seems that the modal expansion method used in Ref. [15] can be also used in conjunction with
the Galerkin's method, so that the influence of various types of boundary conditions on the
dynamic characteristics of cross-ply laminated noncircular cylindrical shells to be investigated.
However, this problem will be treated at a later date. Here, only the free vibration problem of
the noncircular shell subjected to S2 edge boundary conditions will be studied.

To this end, introduction of the displacement model (20) into the shell differential equations
55 Vol. 20. No. 2-8
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and application of the method of Galerkin:

L[LII(u) +L I2(V) +L 13(w)] cos (2ill'e) dz = 0,

L[L 21 (u) +L 22(V) +L23(w)]sin (2ill'e) dz =0,

f [L31(u) +L 32(v) +L 33(W)] cos (2ill'e) dz =0, i =0,1, ... ,N,

lead to the following classical algebraic eigenvalue problem:

where:

(21)

(22)

(23)

In eqn (22), TjkU, k = 1,3) are (N +1) x (N +1) square matrices. Since sin (2n1re) =0 for
n = 0, T I2 and T32 are N x (N +1) matrices; since sin (2ill'e) =0 for i =0, T21 and T23 are
(N +1) x N matrices and T22 is a N x N square matrix. Similarly, for antisymmetric displace­
ments TikU, k =1, 3) are N xN square matrices, T21 and T23 are N x(N +1) matrices, T12 and
T32 are (N +1) xN matrices and T22 is a (N +1) x(N +1) square matrix. For both cases
(symmetric and antisymmetric displacements) the elements of those T" matrices (r, S = 1,2,3)
are given in Appendix B. In eqn (22), a, b and c represent proper column matrices which contain
the unknown coefficients a", b" and c".

The eigenvalue problem (22), solved by a standard numerical procedure, gives 3N +2
eigenvalues (3N +1 in the case of antisymmetric displacements), each one of which is an
approximation of a corresponding natural frequency of the shell. Thus, the integer N must be
chosen so that, for the obtained numerical results, convergence be ensured to the desired
accuracy.

In the Donnell-type equations used in Ref. [9], only transverse inertia had been considered.
Furthermore, in the displacement series expansions, the terms associated with the n = 0 mode
had been omitted. Thus, from the corresponding eigenvalue problem, only N eigenvalues were
obtained each one of which was representing a flexural vibration natural frequency of the shell.
associated with a particular mode (m, n).

Since in-plane inertias have been retained in this study, three natural frequencies are
associated with each mOde having n > 0 and two, a flexural and an axial one, with the n =0
mode. For antisymmetric displacements only one natural frequency associated with the n =°
mode, the circumferential one, is obtained.

4.1 The oval cylindrical shell
For a numerical application, an oval cylindrical shell is considered. According to the oval

curvature representation introduced by Romano and Kempner[l8,19], the function IW is
determined as follows:

IW = 1+E cos (411'e), (24)

where eis an eccentricity parameter such that IEI:s 1. Expression (24) represents a doubly
symmetric oval configuration so, as in the case of elliptic sheUs[20,21], even and odd
displacements (n even or odd integer, respectively) are uncoupled each other (see also Appendix
B).

Furthermore, changing the sign of E in expression (24), a rotation of the oval arises through
90° or, equivalently, a change, through 90°, of the oval circumferential coordinate origin. As
indicated by Fig. 2(a). this change does not affect the even mode shapes (n =0, 2. 4•..) which are
symmetric about both axes of the oval (doubly symmetric mode shapes). Thus, by the proposed
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analysis, symmetric displacements give identical evtnfrequencies for ± E; also antisymmetric
displacements give identical even frequencies for ± E.

On the other hand, as indicated by Fig. 2(b), the change of the circumferential coordinate
origin by goo, influences the odd mode shapes (n =1,3, S, ...) which are symmetric about one of
the oval axes but antisymmetric about the other one (singly symmetric mode shapes). As a
result, odd frequencies obtained for symmetric displacements and +f(-E) are identical to the
corresponding odd frequencies obtained for antisymmetric displacements and -E(+E).

These observations are clearly demonstrated in Table 1, where some of the nondimensional
transverse frequencies Cd of a two-layered boron-epoxy shell, obtained by both Flugge and
Donnell-type theories, are presented. It is, therefore, quite obvious that the amount of the
numerical work can be considerably reduced. Thus, all results indicated throughout this paper,
except those of Table I, were obtained for O:s E :s 1.

Finally, fOJ; the case of a circular cylindrical shell (E =0), since a circle is symmetric about
anyone of its diameters, nothing changes with any change of its circumferential coordinate
origin. Consequently, since with a change of this origin by 900 symmetric displacements
produce the antisymmetric ones, for a circular cylindrical shell, symmetric and antisymmetric
displacements give identical numerical results (see also Appendix B).

4.2 Numerical results and discussion
All numerical results obtained were for shells with constant ratio hiRo= 0.01. Only

frequencies associated with m=1axial half-wave number (the lowest one) had been calculated.

Symmetrfc Antfsymmetrfc Symmetrfc Antisymmetric

+t +£

CD 0'- +',: '\~-+-
\. __ .,1 \ I

,~

-t -t

(a) n"2 (b) n"3

Fig. 2. Mode-shape classifications for flexural displacements of a shell with doubly symmetric cross-
sections.

Table L Nondimensional flexural vibration frequency parameters Iii. for a two-layered boron-epoxy shell
(LJ~= I. lEI = 0.20)

Symmetric Displacements Ant1s,.metr1c Displacements

t .. 0.20 t .. -0.20 I: .. 0.20 I: .. - O.ZO

n Flll9ge Donnell Flll9ge Donnell F1~ Donnell Flune DoIlntll

0 1.01771 1.01880 1.01771 1.01880

1 0.63208 0.63297 0.55170 0.55225 0.55170 0.55225 0.63208 0.63297
2 0.38524 0.38593 0.38524 0.38593 0.39243 0.39312 0.39243 0.39312
3 0.27797 0.27866 0.27632 0.27700 0.27632 0.27700 0.27797 0.27866

4 0.21297 0.21379 0.21297 0.21379 0.21272 0.21354 0.21272 0.21354
5 0.17475 0.17587 0.17472 0.17583 0.17472 0.17583 0.17475 0.17587
6 0.14719 0.14831 0.14719 0.14831 0.14717 0.14829 0.14717 0.14829
7 0.14604 0.14732 0.14603 0.14732 0.14603 0.14732 0.14604 0.14732
8 0.16621 0.16797 0.16621 0.16797 0.16620 0.16796 0.16620 0.16796
9 0.18691 0.18881 0.18691 0.18881 0.18191 0.18881 0.18691 0.18881

10 0.21812 0.22001 0.21812 0.22001 0.21812 0.22001 0.21812 0.22001
11 0.25673 0.25859 0.25673 0.25859 0.25673 0.25859 0.25673 0.25859
12 0.30109 0.30291 0.30109 0.30291 0.30109 0.30291 0.30109 0.30291
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Furthermore, since there is an infinite complexity of the class of cross-ply laminates, only
regular antisymmetric cross-ply laminated shells had been considered, so except of the relations
(15), relations (16) are also valid. It can be furthermore shown[22], that the only nonvanishing
coupling stiffnesses, BI J and Bu , are inversely proportional to the shell number of layers. Thus,
for this kind of laminated composites, the additional coupling between bending and extension.
due to the shell lamination, dies out as the number of layers increases.

For a comparison between Donnell-type[9] and F1ugge-type theories, a family of two­
layered boron-epoxy shells (EdE2 = 10. 0/E2 = 0.5, Vl2 = 0.25) had been used. For a relatively
short shell (L./Ro=1) with quite small eccentricity (lEI =0.2), corresponding nondimensional
flexural vibration frequencies, w, obtained by both theories, are cited in Table 1. Obviously,
both theories give practically identical results. This is because the shell is quite short and
behaves like a quasi-shallow one [23,24].

However,.as indicated by Tables 2 and 3, where corresponding results are cited for longer
shells (L./Ro= 6 and 12, respectively) the accuracy of the Donnell shallow shell theory is
continually decreased as far as the shell axial length is increased, especially for frequencies

Table~. Nondimensional flexural vibration frequency poarameters w. for a two-layered boron-epoxy shell
(LJRo=6. lEI =0.20)

Symnetric Anti s)1llllttric

n Flu9ge Donnell Flu9ge Donnell

n 0.52236 0.52290

1 0.09937 0.10047 0.09202 0.09100

2 0.04743 0.04687 0.04651 0.04680

3 0.02877 0.02962 0.02866 0.02952

4 0.03408 0.03684 0.03278 0.03427

5 0.04875 0.05067 0.04875 0.05067

6 0.07049 0.07243 0.07049 0.07243

7 0.09678 0.09871 0.09678 0.09871

8 0.12725 0.12916 0.12725 0.12916

9 0.16183 0.16371 0.16183 0.16371

10 0.20049 0.20233 0.20049 0.20233

11 0.24321 0.26440 0.24231 0.26440

12 0.29000 0.30824 0.29000 0.30824

Table 3. Nondimensional flexural vibration frequency parameters W. for a two-layered boron-epoxy shell
(L,IRo=12. lEI =0.20)

Symnetric Antisynmetric

n

o
1
2

3

4

5

6

7

8

9

10

11
12

Flu9ge

0.26125

0.03489

0.01846

0.01770

0.03199

0.04786

0.07021

0.09665

0.12716

0.16175

0.20040

0.24311

0.28989

Donnell

0.26152

0.03801

0.02210

0.01837

0.03183

0.04982

0.07216

0.09858

0.12907

0.16363

0.20224

0.24492

0.30814

Fl u9ge

0.03708

0.01589

0.01741

0.02952

0.04786

0.07021

0.09665

0.12716

0.16175

0.20040

0.24311

0.28989

Donnell

0.03447

0.01552

0.01832

0.03168

0.04982

0.07216

0.09858

0.12907

0.16363

0.20224

0.24492

0.30814
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with small nominal circumferential wave number n. Let us, for instance, consider the case of
the frequencies obtained for symmetric displacements with II =1,2 and 3. Although for
LiRo=6 the predicted by the Donnell theory frequencies are, respectively, about 1, 1.3 and 3%
higher than the corresponding frequencies obtained by the Flugge-type theory, for the shell
with LiRo=12, the corresponding discrepancies are about 8.9, 8.9 and 4%, respectively.
Similarly, for the frequencies obtained for antisymmetric displacements with n = 1,3 and 4,
although for LJRll =6 the Donnell's theory predictions are about 1% lower and 2.7 and 4.6%
higher, respectively, than the corresponding Flugge's theory ones, for LxlRo=12, the cor­
responding discrepancies are about 7.5 and 7.5%. respectively.

Furthermore, a comparison between corresponding results, cited in Tables 2 and 4, leads to
the conclusion that the eccentricity parameter E is also affecting considerably the accuracy of
the Donnell's theory results, especially for frequencies with small nominal circumferential wave
numbers. Let us consider, for instance, the case of the fundamental frequency (n = 3) obtained
for symmetric displacements. For E =0.2 (Table 2) the fundamental frequency obtained by the
Donnell-type theory is about 3% higher than that one obtained by the Flugge-type theory, but
for E =1.0 (Table 4) the Donnell's theory prediction is about 9.3% lower than the corresponding
Flugge's theory one.

Further comparisons between corresponding results obtained by both theories but not cited
here, have shown that the dependency of the accuracy of the Donnell-type theory upon the
eccentricity parameter E is continually increased as far as the shell axial length is increased.
However, independently of the value of E, for relatively short (LiRo< 1) two-layered
boron-epoxy cylinders, the observed discrepancies, between corresponding results obtained by
both theories, were never exceeded the engineering admissible relative error 5%.

A remarkable observation is that, independently of the theory used, the difference of
corresponding frequencies obtained for symmetric and antisymmetric displacements becomes
less and less observable, provided that their circumferential wave number n is quite high. This
is because of the fact that as the number of nodes increases, the radius of curvature within the
arc between nodes becomes more or less constant, even though the eccentricity may be large.

When the eccentricity parameter E is small, the nominal circumferential half-wave number n
of a frequency is determined simply by one-half of nodes along the oval contour. However, as
the eccentricity is increased the mode shapes may be varied significantly from those of the
circular cases. Thus, for large values of the eccentricity parameter, n may be determined by the
curves tracing the continuous variation of the frequencies versus E. Those curves are indicated
in Fig. 3, for a two-layered boron-epoxy shell.

Figure 4 indicates that the orthotropic modulus ratio E,/E2 affects considerably the

Table 4. Nondimensional ftexural vibration frequency parameters Iii. for a two-layered boron-epqxy shell
(L./Ro= 6.IE\ =I)

S)'IIIIletric Ant1s)'IIIIletric

n Flugge Donnell Flugge Donnell

0 0.52254 0.52308

1 0.10904 0.11394 0.08569 0.07875

2 0.35165 0.35225 0.05751 0.05291

3 0.02814 0.02548 0.01621 0.01541

4 0.04708 0.04448 0.03051 0.02903

5 0.05108 0.05156 0.05206 0.05144

6 0.06931 0.07221 0.06805 0.07221

7 0.09571 0.09828 0.09552 0.09828

8 0.12606 0.12868 0.12607 0.12868

9 0.16057 0.16321 0.16057 0.16321

10 0.19917 0.20183 0.19917 0.20183

11 0.24186 0.24451 0.24186 0.24451

12 0.28862 0.29126 0.28862 0.29126
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Fig. 3. Variation of flexural vibration frequency parameters versus the oval eccentricity parameter.
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..frequencies of a two-layered shell. There, values of GrzlE2 and JlI2 are fixed because the
influence of their variation on the shell frequencies is small compared to that of E.IE2•

Furthermore, the effect of coupling between bending and extention, due to the shell lamination,
on the shell frequencies depends essentially on the orthotropic modulus ratio E.IE2, as Fig. S
indicates. There, the variation of the fundamental frequency (n = 3) of an oval shell, having the
same geometrical characteristics with that of Fig. 3 and consisting of 2, 4 and infinite number of
layers, is indicated.

Obviously, the effect of that lamination coupling between bending and extension is to reduce
frequencies from their orthotropic values (00 number of layers). This reduction is continually
increased as far as the orthotropic modulus ratio E./E2 is increased. However, the lamination
coupling effect rapidly dies out as the number of layers of the antisymmetric cross-ply
laminated shell is increased.

S. CONCLUSIONS

For a generally anisotropic laminated thin elastic non-circular cylindrical shell, subjected to
a combined loading, the equations of motion of a second approximation Augge-type theory
have been derived in terms of the shell middle surface displacement components. As an
application of the derived equations, the free vibration problem of a cross-ply laminated sh'ell,
subjected to 82 simply supported edge boundary conditions, have been solved and numerical
results have been presented for oval shells.

From the comparison attempted between corresponding results obtained by both the
Augge-type equations, derived here, and the much simpler Donnell-type ones, available in the
literature, it has been shown that, for this particular problem, the quasi-shallow shell equations
are accurate enough provided that the shell is short enough. The results of the Donnell-type
equations become more and more inaccurate, and therefore the use of the Augge-type
equations is needed, as far as either the axial length of the cylinder or the oval eccentricity
parameter is increased.

Apparently, the Flugge-type equations give more accurate results than the quasi-shallow
ones and, possibly, the coresponding first approximation equations, because of the inclusion of
terms involving z/R in comparison with unity. However, it must be pointed out that, in spite of

J0.03

"'min

0.024

0.022 1

L/RO • 6

hlRo • 0.01

c • 0.50
m• 1
n • 3

Fig. S. Variation of flexural vibration fundamental frequency parameters versus the orthotropic modulus
ratio and the number of layers.
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.the inclusion of these terms, the validity of the equations derived here is restricted only in
consideration with thin shells. For the analysis of thick shells, the derived equations must be
improved so that that transverse shear deformation as well as rotating inertia be taken into
consideration.
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APPENDIX A

TIle stijfne.ls .IIlbmatrices appearing in eqns (6)
The still'ness submatrices appearing in eqns (6) are given. in terms of the extensional. coupling and bending submatrices

components defined in eqn (8). as follows:

[ A"+B,,I> AI2+ 81z1R A"+B,./> +D,./2R']
(A'] = AI2

Au A26 + D2612R2

Alb+ BIJR A26+8261R A66 + 8M!R + DtJ2R2 .

AI6 A26 A66 + D,.J2R2

[ B"+I),,I> 812 BN+D'''']
[B'] = 812 8u-DnIR 826- D2612R

816+DIJR B26 B66+DtJ2R .

816 826- D261R 866-DeJ2R

[ >"+D,,I> BI2+ DI2/R B,,+ D,JR]
[C'l= 812

8 22 B2I>

BI6 +DIJR 826+ D261R 866 +DtJR .

BI6 B26 866

(AI)

(A2)

fA3)
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APPENDIX B

Tht ma/rietS apptarillll ill tqll (22)
The elements of the matrices T,.(r, S =I, 2, 3) appearina in eqn (22) are given as follows:

(Til)..... (A..2+ 112A.,.)~ +2(.\,.2Sll - 112a">'I(1l, i) + 1I2o..&ill. i)} - 11,(lIhr){B.,.e)(n. i)- 2Owe"<lI, i)].

(Till. = - I1.A..lI{(AI2 +A">~ + 2(812 + 8">61(11. i») - (A.,/211'1B.,.63(1I. i),

(T,,).. =(T)l).. ., - 2A..(AI2+ A..2DII -1I2[).,.)61(1l. i) - A..{A..28 11 + 11 2(BI2 +28116)]6,.; + 11,(A..lI/ff2)Ow6in. i),

(T21).. =- I1,A..II{(AI2+ A.,.)&"j +2(B.2+ 86616,(Il, i)),

(Tn).. " (A..2A66+ 112Aw~ +2(3A..2S66+ 112Sn)S,(n, i) +6A..20..6f,(n. i),

(T2,).. = J4,11 {II2812 +.\,.2(8.2+ 2866»)6,.; +J4,21l{An + A..2(DI2+ 3D...,)J6,(n. i) - (I/lf)An8,(ll. i)

- J4.21l3l>z2Ba(1l, i) + 2812. hl.Il6,(1l, i)+ (I/2ff)810(1I. i)) - 2l>z21-p.,Il61\(1l, i) +(I/1I')8.ill, ill.

IT)2).. " l£,n11l28n+ A..2(812+ 2BMlJ6.u +1l.111{An+ A..teD'2- 30..)}6.(1I. i),

(Tn).. " IA:Dn+ ll..2112(DI2+ 2[).,.)+ 114Dz2J6.u +2(An- 2112t>w6ill, i) H(A..28 12 + 1128n)6.(1I, i)

+ 2B21!Il,(n!ff)6)(II, i) .. 913(11. i» + 2l>z216•.(II. i) -1£.8.(n. i)). /I, i., 0,1.2, ... N. (BI)

where A.. =AmlT. 8.. is tbe Kronecker's delta and 11• ., 1 or -1 for symmetric or antisymmetric displacements. respec­
tively.

For symmetric displacements. the quantites 8j(lI. i) (j" 1.2, ....14) are given. in inte~ form as follows:

8.(11, i) =Q f 1m cos (2I1fff) cos (1ill'f) df.

&ill, i)" Q f 12«() cos (21111'f) cos (2i1l'f) df.

8ill. i) =Q f ~ sin (211lfO cos (2i1f() df.

9.(11. i) ., a f IW~ sin (21111'0 cos (liff() df.

6,(11. i) =a f 1m sin (2111T() sin (2iff() d(,

66111. i) =a f lm sin (21111'0 sin (2i1l'() df,

8.,(11. il = a f :~ cos (2I1ff() sin (2i1l'f) d(.

6a(1I, i) = Q L'*sin (21l1T() sin (2i1ff) df.

6oJ(1I. i) = aL1m~ sin (2111Tf) sin (2i1l'f) df.

61C~1I. i)" a f (*)2
COS (2111T~) sin (l;ll'() d~.

'11(11, i) = Qf*12msin (2111Tf) sin (2i1l'() d(,

611(11, i) =aL11m ~1) 2 cos (2111T~) sin (2i1f~) d(.

9,,(11, i) = aL[/'(f) +(1/411'1~J cos (1111f() cos (2i1fOdf.

8•.(11. i) =a f [rw +(Il2ff2)(*f+(I/21f)2~/W] cos (211'11'f) cos (1ilTtl d(.

1821

Furthermore. if i ., 0 tbe elements (T2j). and if II .. 0 the elements (Tnl. (j = 1.2,3) must be omitted in the construction of
the correspondina matrices.

For antisymmetric displacements. the sine and cosine functions appearinl in the expressions (B2) must be replaced by
cosine and sine functions, respectively. Furthermore. for; =0 and for II" 0 all elements (Tlj)" and (Til).. (It .. 1.3:
j = I. 2. 31. respectively. must be omitted in the construction of the corresponding malrice~.

In any case in whicb IW is a very complicated function of tlte circumferential coordinate t. the quantities 8j(lI. i)
(j c 1.2•... _14) can be evaluated numerically. However. in the case of the oval shell. tbe simplicity of the expression (24)
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permits the quantities 1I,(n. j) to be evaluated analytically. To this end. the following functions are defined:

1=0
1/2~,"

n+i=1
1/4

In-il= I
1/4,

(]
otherwise

I =O,n""O
(B3)

1/26"i
n+i=1

1/4

In-il=1
1/4,

O.otherwise

Ul, n, i) = a f cos (2IT1'f) cos (2nTl'f) cos (2iTl'f) dz =

Zz(I. n, il = a f cos (211I'f) sin (2nTl'f) sin (2iTl'f) dz = ~.....;.;..""C

where I. nand i represent nonegative integers. Then, the quantities 1I,(n, il can be expressed as folows:

( .) 1/2' [Z\(2, n, i)]
11\ n,' = 0.1 + ( Z:z(2, n, i) ,

. /2( 2/2) 2 [Z\(2, n, i)] (2/2)[U4, n, i)]lI:z(n, I) = I 1+( ~.i + ( Z:z(2, n, il + ( Z:z(4, n, i) ,

( .) 4 [Z:z(i, n, 2)]
113 n, I = - 11'( Z:z(n, i, 2) ,

( . 4 [Z:Z(i, n, 2)] 2 2[Z:z(i, n, 4)]
114 n, I) = - 11'( Z:z(n, i.2) - 11'( Z:z(n, i,4) ,

( . /2 [ZZ(2, n, i)]
lis n, I) =I ~'" +( Z,(2, n, i) ,

. / ( 2/2 2 [Z:Z(2, n, il] (2/2)[Z:z(4, n. il]l161n.l) = I 2 1+ ( )~.i + ( U2. n, il + ( Z,(4, n, i) ,

-" [Z:z(n. i.2)]
117\n./) = -411'( Z:z(i. n. 2) ,

lI.<n, i) = llin, i) = lIu.<n, il = III\(n, il = III:z(n, i) = 0,

2 2 [ZI(2, n, i)] 2 [U4, n, i)] (3/4)[U6. n. il]
1I\3(n, il = 1/20 + 3( /2)~.i - (0 - 3( /4) Zz(2. n. i) +(3( /2) Zz(4, n, i) + ( Z:z(6, n. il .

1114(n, i) = 1/20 + 3(2 + 3(4/8)~.i - (4- 3(2)[~~i:::::]

_ (2(5 _ (2/2)[ZI(4. n, ~)] + (3 [ZI(6. n. ~)] +«(4/8) [ZI(8, n. ~)],
Z:z(4, n, ,) Z:z(6, n,l) Z:z(8, n, I)

(B4)

where the upper and the lower functions appearing in the braces represent symmetric and antisymmetric'displacements
respectively.

An attentive observation of the expressions (B4) makes apparent that each one of the functions Z\ and Z2, appearing
there, has a nonzero contribution only if both nand i are or even or odd integers. As a result. even the odd displacements
(n even or odd integer, respectively) are uncoupled and do not affect each other.

It must be also noted that for ( = 0 (circular cylindrical shell), the choice of symmetric or antisymmetric displacements
does not affect the final value of each one of the quantities II/(n, i). Thus, for a circular cylindrical shell, symmetric and
antisymmetric displacements give identical numerical results.


